Pool Boiling Heat Transfer Enhancement Through Nanostructures on Silicon Microchannels

نویسندگان

  • Z. Yao
  • Y.-W. Lu
  • S. G. Kandlikar
چکیده

Uniform silicon nanowires (SiNW) were successfully fabricated on the top, bottom, and sidewall surfaces of silicon microchannels by using a two-step electroless etching process. Different microchannel patterns with the channel width from 100 to 300 lm were first fabricated in a 10 mm 10 mm silicon chip and then covered by SiNW with an average height of 10–20 lm. The effects of the microchannel geometry, micro/ nano-hierarchical structures on pool boiling were studied and the bubble dynamics on different sample surfaces were compared. It was found that the combination of the micro/nanostructures promoted microbubble emission boiling under moderate heat fluxes, and yielded superior boiling heat transfer performance. At given wall superheats, the maximum heat flux of the microchannel with SiNW was improved by 120% over the microchannel-only surface, and more than 400% over a plain silicon surface. These results provide a new insight into the boiling mechanism for micro/nano-hierarchical structures and demonstrate their potential in improving pool boiling performance for microchannels. [DOI: 10.1115/1.4007425]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels

Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating und...

متن کامل

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part II: Experimental results and bubble dynamics for circumferential V-groove and axial rectangular open microchannels

A two-part experimental study is conducted on pool boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric pressure. In this Part II of the study, the effects of circumferential V-groove microchannels and axial rectangular microchannels are reported. These experiments were performed in the horizontal as well as vertical orientations. The heat transfe...

متن کامل

AFRL-OSR-VA-TR-2014-0183 (YIP 11) Advanced Nanostructures for Two-Phase Fluid and Thermal Transport

This report summarizes our three-year effort on advanced micro and nanostructures for fundamental studies of fluid manipulation and enhanced two-phase heat transfer. First, we studied the role of micro/nanostructures on pool boiling heat transfer. We fabricated well-defined microstructured surfaces in silicon and performed systematic pool boiling experiments in which we demonstrated that increa...

متن کامل

Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling

A novel microfabrication technique was developed to create silicon nanowires (SiNWs) on orthogonal surfaces of microchannels machined on top of a silicon wafer. Using a two-step metal-assisted etching process, the SiNW for the first time could be selectively fabricated on two different crystalline directions—the channel top and bottom surfaces oriented in the (1 0 0) direction while the sidewal...

متن کامل

Microchannel size effects on local flow boiling heat transfer to a dielectric fluid

Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013